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Abstract

A new baseband formulation of the coupled
cavity/longitudinal-bunch ODEs is derived. Assuming
linearity, a model of the form_x(t) = A(t)x(t) +B(t)u(t)
arises, whereA(t) andB(t) are piecewise constant, and
periodic with the revolution periodTo. Such models,
known in the control community as (periodic) switched
systems, have known (in)stability criteria and control
theoretic properties, which can be useful in the analysis
and control of multiple bunch beamloading.

1 BASEBAND FORMULATION

The term beamloading is to imply here the dynamical in-
teraction between a given cavity resonance and theN -
bunches’ longitudinal dynamics. Resonance implies band-
limitedness (BL), and a standard tool for the analysis of
bandlimited signals and systems (ODEs) is the IQ formal-
ism [1]. The formalism has been applied to beamloading,
especially w.r.t. the cavity ODE in [2], [3].

In the way of review and to establish notation: The
Fourier transform of the resonanceZ(j!), of orderM in
j!, is assumed to be (effectively) zero for! outside its
band. Denote the positive part of the band by
. Then us-
ing some carrier frequency!c 2 
, the impulse response
kernel ofZ(j!) is

z(t) = zI(t) cos!ct� zQ(t) sin!ct: (1)

The utility of the IQ formalism lies in the fact that we need
only consider the complex envelope, defined as~z(t) =
zI(t) + jzQ(t), whose Fourier transform~Z(j!) is also
of orderM in j!. In particular, the cavity output sig-
nal v(t) to an (AM/PM) sinusoidf(t) is obtained via
~v(t) = ~f(t) � ~z(t).

1.1 Bunch Train Signal

Use of the IQ formalism presupposes AM/PM signals of
the form (1). It is now shown that the beam current, mod-
eled here as an impulse train,is seen by the resonanceap-
proximately as an AM/PM signal about the carrier!c.

The width of 
 determines the minimum number of
bunches that need be considered in a time domain analy-
sis; arbitrary gaps in the beam current may make this de-
termination difficult. Here, the number of representative
bunchesN is assumed known, chosen through modal anal-
ysis or made safely large.
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DefineNo as the number of bunch current “segments”:
eachnth beam current segment is of durationTb = To=No

and has a chargeqn; n = 1; : : : ; No. qn may be identically
zero if and only if the segment represents a gap; if there are
no gapsN = No. Henceforth the word bunch shall mean
bunch segment.

Let �n;p denote thenth bunch’s deviation in arrival time
at the cavity from the nominal, for thepth arrival. Of course
if qn = 0 then�n;� is devoid of physical meaning; otherwise
it is governed by the synchrotron ODE. However, the cavity
sees the beam current as a signal, and that is the perpective
of this section.

The time-infinite beam current is written, using Wilson’s
phasor convention [4], as

i(t) = �

NoX
n=1

qn

1X
p=�1

Æ

�
t�

�
p+

n� 1

No

�
To � �n;p

�

(2)
but, as proven in section 1.2, the following Proposition ap-
plies:
Proposition The beam current (2) is seen by an
-BL
resonance approximately as

i(t) � �q(t)
2

Tb
[cos!ct+ !c�(t) sin!ct] : (3)

In (3), q(t) = q(t + To) is a continous-time interpola-
tion (CTI) of qn; n = 1; : : : ; No, and �(t) is a CTI of
�n;p;8n; p, as depicted in Figures 1-2 and defined in the
next section. Note that�(t) is of use only in discussing
the beam current as a signal; when addressing the system
aspect (section 1.3 and on),�(t) will be abandoned.

1.2 Proof of the Proposition

The Proposition is proved in three steps: interpolation, Tay-
lor series approximation, and application of some Fourier
properties.
Interpolation [1] The signalsq(t) and�(t) are formally
constructed via the interpolation kernelST1(t) = u(t +
T1=2) � u(t � T1=2), where T1 is some period, and
u(t) = 1 for t � 0, and is zero otherwise. Define
�qk = q�1+k mod No

. Then formally,

q(t) =

1X
k=�1

�qkSTb (t� kTb) ; (4)

�(t) =

1X
p=�1

NoX
n=1

�n;pSTb

�
t�

n� 1

No

� pTb

�
: (5)

0-7803-5573-3/99/$10.00@1999 IEEE. 1073

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

q
4

q
1

q
2

q
3

q
4

q(t)

time [Multiples of T
b
]

Figure 1: i(t) andq(t) for a case whereNo = 4; N = 3
(ordinate units are arbitrary).q(t) is the “envelope” ofi(t).
The horizontal arrows indicate arrival time deviations and
are interpolated sequentially into�(t).
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Figure 2:�(t) as interpolated from the�n;p of i(t) of Figure
1.

Sincey(t)Æ(t� a) = y(a)Æ(t� a), (2) can be rewritten as

i(t) = �q(t)

1X
k=�1

Æ (t� kTb � �(t)) : (6)

Taylor Series Approximation Assuming thatj�(t)j of (6)
is small for allt, then the bilinear (first two) terms of the
signal’s Taylor series expansion approximate the signal [5].
Hence, the RHS of (6) can be rewritten as

i(t) � �q(t)

1X
k=�1

h
Æ (t� kTb)� �(t) _Æ (t� kTb)

i
:

(7)
Fourier Analysis Via Fourier series it is known thatP

Æ(t � nT1) = 2=T1
P

cosn!1t, where the sum is for

n over the set of all integers. Applying the transform
identity _y(t) $ j!Y (!) yields that

P _Æ(t � nT1) =
�2!1=T1

P
n sinn!1t. Thus the RHS of (7) can be writ-

ten as

q(t)
2

Tb

"
1X
p=0

cos p!bt+ �(t)!b

1X
p=0

p sin p!bt

#
: (8)

Finally, aside from the considerations mentioned in sec-
tion 1.1 regarding the choice ofN and henceNo, here a
further imposition onNo is introduced:No is chosen s.t.
ko!b 2 
 for one and only one integerko. Choose the car-
rier frequency according to!c = ko!b. Thus by design,
no harmonics of!b fall in the band
, and it can be shown
(e.g., via convolution) that the
-BL resonance sees only
the harmonicp = ko of (8), concluding the Proof.
Remark The derivation of (3) does not impose any as-
sumptions on the bunch longitudinal motion other than it
is of small amplitude, cf. the traditional derivations using
modal analysis and Bessel functions [6]. In addition, it al-
lows for gaps in the bunch train.

1.3 Beamloading ODEs

It is convenient henceforth to use deviation from nominal
values for all variables. Then the cavity portion of the over-
all beamloading system at baseband can be written asf�v(t) = ~z(t) � [�iI(t) + j�iQ(t)]

= ~z(t) � 2

�
q(t)

Tb
� Io + j

!cq(t)�(t)

Tb

�
� �vII ��vQQ + j [�vIQ +�vQI ] ; (9)

whereIo is the DC beam current.
From the perspective of the cavity resonance�(t) is

a signal, but in truth it is determined over time byN
synchrotron ODEs. These are incorporated in the over-
all system by now abandoning the variable�(t), and in-
stead working with the new continuousstate variables
�m(t);m = 1; : : : ; N , which represent eachmth bunch’s
arrival time deviation from nominal. The relationship be-
tween�m(t) and (9) will be evident in the following devel-
opment.

From the perspective of themth bunch, the cavity volt-
age represents a forcing function that is nonzero only dur-
ing the time intervalsTm, during which the bunch couples
to, i.e., passes through, the cavity. For example, bunch No.
1 of Figure 1 passes through the cavity during the intervals

T1 =

1[
p=�1

�
pTo �

Tb
2
; pTo +

Tb
2

�
: (10)

Otherwise, i.e.,8t 2 T
c
m, where�c denotes set comple-

ment, the bunch is not coupled to the cavity. The set of all
time intervals that correspond to gaps isTo = \Tc

m.
Defining�m(t) = !c�m(t), the linearizedsynchrotron

ODE can thus be written as

��m + 2� _�m + !2s�m =

�
fc(t) t 2 Tm

0 t 2 Tc
m

; (11)
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where � is the inverse damping time, and!s is the
synchrotron frequency. It can be shown that given lin-
earization, the RHS forcing function is given byfc(t) =

!2
s

Vc sin�s
[�vII (t)��vQQ(t)], whereVc is the peak cavity

voltage, and�s is the synchronous phase.
Remark �vII(t) is a function ofq(t), and hence is not
a state but a stationary forcing function, not governed by
an ODE. Therefore it does not have any bearing on (lin-
earized) stability, see e.g., [7], Theorem 12.6. Thus,the
quadrature impulse response of the cavity resonancezQ(t)
and notzI(t) determines linearized beamloading stability,
aside from the beam ODEs. Compare the argument pro-
posed in [3] to prove this. Note also that the result is par-
ticularly transparent here after having used the phasor ref-
erence plane of [4].

2 SWITCHED SYSTEM FORMULATION

By merging the cavity (9) and beam (11) system formu-
lations developed above, one arrives at a single ODE of
the form _x(t) = A(t)x(t) + B(t)�vII (t): TheM cavity
states�vM�1

QQ (t); : : : ;�vQQ(t) and the two bunch states

�
0

m(t); �m(t) for each of theN bunches are ordered in the
column vectorx, where the superscript now denotes deriva-
tive order. Thusx has2N +M elements. The ODE coeffi-
cients are corresponding elements ofA(t) andB(t). More
specifically, the resulting overall system is of the form

_x(t) =

�
Amx(t) +Bm�vII (t) t 2 Tm
Aox(t) t 2 To

: (12)

The top part of the RHS conveys that while themth
bunch passes through the cavity, the beam current [quadra-
ture modulated by the state�m(t)] perturbs the cavity.
Meanwhile the bunch is perturbed by the cavity state
�vQQ(t), and by the forcing function�vII (t). During the
periods corresponding to gaps (bottom of RHS), the cav-
ity and bunches are uncoupled. Thus,Ao is a ( ) by
( ) block diagonal matrix, andAm contains the same
block diagonal elements as well as off diagonal coupling
terms. Bm is (N+M ) by 1, and contains only a single
nonzero element.

3 APPLICATIONS

Given an initial conditionxo, say att = 0, then (12) rep-
resents an initial value problem,_x(t) = A(t)x(t); x(0) =
xo. Two properties of the system readily lend themselves
to application of ODE system theory, see e.g., [7]. First,
A(t) is piecewise constant, or a switched system, which
means that the state transition matrix�(t; 0) for any t can
be computed as the product of matrix exponentials. For ex-
ample, in the case of Figure 1, starting att = 0, the state at
3:5Tb is given byeTbA3eTbA2eTbAoe0:5TbA1xo. Thus, us-
ing the state transition matrix, the statex(t) for any t can
be computed, see [8].

Second, sinceA(t) is To periodic, Floquet Theory can
be applied to assess (in)stability:

Theorem [Floquet] The system (12) is stable (unstable)
if and only if the magnitudes of the eigenvalues of�(To; 0)
are s.t. all are less than unity (at least one is greater than
unity).

A particularly useful application of this criterion is the
identification of the cavity higher mode(s) that cause cou-
pled bunch instabilities in a partially filled storage ring [9]:
For each cavity mode, a new!c is determined, and then the
eigenvalues of the corresponding�(To; 0) are checked for
stability.

A final application (but originally the motivating appli-
cation) is beamloading control. The authors of [10] note
that the now classic optimal state space control theory
does not readily apply to multiple bunch beamloading.
The switched system formulation, along with some recent
control-theoretic results relating to the control of such sys-
tems [11], are therefore of particular interest and are cur-
rently under study.
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